物理是由浅入深的,基础没有砸实很难做好综合题目,大题做起来就会很困难,所以学物理不能掉以轻心。今天小编在这给大家整理了高一物理必修一知识点,接下来随着小编一起来看看吧!
(资料图片仅供参考)
高一物理必修一知识点
1高一物理中运动的描述相关知识点
一、时刻与时间间隔的关系
时间间隔能展示运动的一个过程,时刻只能显示运动的一个瞬间。对一些关于时间间隔和时刻的表述,能够正确理解。例如:第3s末、3s时、第4s初……均为时刻;3s内、第3s、第2s至第3s内……均为时间间隔。区别:时刻在时间轴上表示一点,时间间隔在时间轴上表示一段。
二、路程与位移的关系
位移表示位置变化,用由初位置到末位置的有向线段表示,是矢量。路程是运动轨迹的长度,是标量。只有当物体做单向直线运动时,位移的大小等于路程。一般情况下,路程≥位移的大小。
三、速度与速率的关系
四、速度、加速度与速度变化量的关系
五、运动图像的含义和应用
由于图象能直观地表示出物理过程和各物理量之间的关系,所以在解题的过程中被广泛应用。在运动学中,经常用到的有x-t图象和v—t图象。
1.理解图象的含义:(1)x-t图象是描述位移随时间的变化规律。(2)v—t图象是描述速度随时间的变化规律。
2.了解图象斜率的含义:(1)x-t图象中,图线的斜率表示速度。(2)v—t图象中,图线的斜率表示加速度。
2高一必修一匀变速直线运动的研究一、匀变速直线运动的基本公式和推理
1.基本公式
三个公式中的物理量只要知道任意三个,就可求出其余两个。利用公式解题时注意:x、v、a为矢量及正、负号所代表的是方向的不同。解题时要有正方向的规定。
2.常用推论
二、运动图像的理解及应用
1.研究运动图象:
(1)从图象识别物体的运动性质。
(2)能认识图象的截距(即图象与纵轴或横轴的交点坐标)的意义。
(3)能认识图象的斜率(即图象与横轴夹角的正切值)的意义。
(4)能认识图象与坐标轴所围面积的物理意义。
(5)能说明图象上任一点的物理意义。
2.x-t图象和v—t图象的比较:如图所示是形状一样的图线在x-t图象和v—t图象中所代表的不同含义。
三、追及和相遇问题
1.追及、相遇的特征:
追及的主要条件是:两个物体在追赶过程中处在同一位置。两物体恰能相遇的临界条件是两物体处在同一位置时,两物体的速度恰好相同。
2.解追及、相遇问题的思路:
(1)根据对两物体的运动过程分析,画出物体运动示意图。
(2)根据两物体的运动性质,分别列出两个物体的位移方程,注意要将两物体的运动时间的关系反映在方程中。
(3)由运动示意图找出两物体位移间的关联方程。
(4)联立方程求解。
3.分析追及、相遇问题时应注意的问题:
(1)抓住一个条件:是两物体的速度满足的临界条件。如两物体距离最大、最小,恰好追上或恰好追不上等;两个关系:是时间关系和位移关系。
(2)若被追赶的物体做匀减速运动,注意在追上前,该物体是否已经停止运动。
4.解决追及、相遇问题的方法:
(1)数学方法:列出方程,利用二次函数求极值的方法求解。
(2)物理方法:即通过对物理情景和物理过程的分析,找到临界状态和临界条件,然后列出方程求解。
四、纸带问题
1.判断物体的运动性质:
(1)根据匀速直线运动特点x=vt,若纸带上各相邻的点的间隔相等,则可判断物体做匀速直线运动。
(2)由匀变速直线运动的推论△x=aT?,若所打的纸带上在任意两个相邻且相等的时间内物体的位移之差相等,则说明物体做匀变速直线运动。
2.加速度
(1)逐差法:a=[(x6+x5+x4)-(x3+x2+x1)]/9T?
(2)v—t图象法:利用匀变速直线运动的一段时间内的平均速度等于中间时刻的瞬时速度的推论,求出各点的瞬时速度,建立直角坐标系(v—t图象),然后进行描点连线,求出图线的斜率k=a。
3高一物理中的相互作用知识点总结一、弹力问题
1、弹力的产生:
条件:(1)物体间是否直接接触。(2)接触处是否有相互挤压或拉伸。
2.弹力方向的判断:
弹力的方向总是与物体形变方向相反,指向物体恢复原状的方向。弹力的作用线总是通过两物体的接触点并沿其接触点公共切面的垂直方向。
(1)压力的方向总是垂直于支持面指向被压的物体(受力物体)。
(2)支持力的方向总是垂直于支持面指向被支持的物体(受力物体)。
(3)绳的拉力是绳对所拉物体的弹力,方向总是沿绳指向绳收缩的方向(沿绳背离受力物体)。
补充:物体间点面接触时其弹力方向过点垂直于面,点线接触时其弹力方向过点垂直于线,两物体球面接触时其弹力的方向沿两球心的连线指向受力物体。
3.弹力的大小:
(1)弹簧的弹力满足胡克定律:F=kx。其中k代表弹簧的劲度系数,仅与弹簧的材料有关,x代表形变量。
(2)弹力的大小与弹性形变的大小有关。在弹性限度内,弹性形变越大,弹力越大。
二、关于摩擦力的问题
1.对摩擦力认识的四个“不一定”:
(1)摩擦力不一定是阻力。
(2)静摩擦力不一定比滑动摩擦力小。
(3)静摩擦力的方向不一定与运动方向共线,但一定沿接触面的切线方向。
(4)摩擦力不一定越小越好,因为摩擦力既可用作阻力,也可以作动力。
2.静摩擦力用二力平衡来求解,滑动摩擦力用公式F=μFn来求解。
3.静摩擦力存在及其方向的判断:
存在判断:假设接触面光滑,看物体是否发生相当运动,若发生相对运动,则说明物体间有相对运动趋势,物体间存在静摩擦力;若不发生相对运动,则不存在静摩擦力。方向判断:静摩擦力的方向与相对运动趋势的方向相反;滑动摩擦力的方向与相对运动的方向相反。
三、物体受力分析
1.物体受力分析的方法:
2.受力分析的顺序:先重力,再接触力,最后分析其他外力。
3.受力分析时应注意的问题:
(1)分析物体受力时,只分析周围物体对研究对象所施加的力。
(2)受力分析时,不要多力或漏力,注意确定每个力的实力物体和受力物体,在力的合成和分解中,不要把实际不存在的合力或分力当做是物体受到的力。
(3)如果一个力的方向难以确定,可用假设法分析。
(4)物体的受力情况会随运动状态的改变而改变,必要时根据学过的知识通过计算确定。
(5)受力分析外部作用看整体,互相作用要隔离。
四、物理正交分解法在力的合成与分解中的应用
1.正交分解时建立坐标轴的原则:
(1)以少分解力和容易分解力为原则,一般情况下应使尽可能多的力分布在坐标轴上。
(2)一般使所要求的力落在坐标轴上。
4必修一牛顿运动规律一、对牛顿运动定律的理解
1.对牛顿第一定律的理解:
(1)揭示了物体不受外力作用时的运动规律。
(2)牛顿第一定律是惯性定律,它指出一切物体都有惯性,惯性只与质量有关。
(3)肯定了力和运动的关系:力是改变物体运动状态的原因,不是维持物体运动的原因。
(4)牛顿第一定律是用理想化的实验总结出来的一条独立的规律,并非牛顿第二定律的特例。
(5)当物体所受合力为零时,从运动效果上说,相当于物体不受力,此时可以应用牛顿第一定律。
2.对牛顿第二定律的理解:
(1)揭示了a与F、m的定量关系,特别是a与F的几种特殊的对应关系:同时性、同向性、同体性、相对性、独立性。
(2)牛顿第二定律进一步揭示了力与运动的关系,一个物体的运动情况决定于物体的受力情况和初始状态。
(3)加速度是联系受力情况和运动情况的桥梁,无论是由受力情况确定运动情况,还是由运动情况确定受力情况,都需求出加速度。
3.对牛顿第三定律的理解:
(1)力总是成对出现于同一对物体之间,物体间的这对力一个是作用力,另一个是反作用力。
(2)指出了物体间的相互作用的特点:“四同”指大小相等,性质相等,作用在同一直线上,同时出现、消失、存在;“三不同”指方向不同,施力物体和受力物体不同,效果不同。
二、应用牛顿定律时常用的技巧方法
1.理想实验法。2.控制变量法。3.整体与隔离法。4.图解法。5.正交分解法。6.关于临界问题处理的基本方法是:根据条件变化或过程的发展,分析引起的受力情况的变化和状态的变化,找到临界点或临界条件。
小编推荐:高中物理选择题解题技巧
三、物理应用牛顿运动定律解决的典型问题示例
1.力、加速度、速度三者的关系知识点:
(1)物体所受合力的方向决定了其加速度的方向,合力与加速度的关系F=ma,合力只要不为零,无论速度是多大,加速度都不为零。
(2)合力与速度无必然联系,只有速度变化才与合力有必然联系。
(3)速度大小如何变化,取决于速度方向与所受合力方向之间的关系,当二者夹角为锐角或方向相同时,速度增加,否则速度减小。
2.关于轻绳、轻杆、轻弹簧问题的相关知识点:
(1)轻绳:①拉力的方向一定沿绳指向绳收缩的方向。②同一根绳上各处的拉力大小都相等。③认为受力形变极微,看做不可伸长。④弹力可做瞬时变化。
(2)轻杆:①作用力方向不一定沿杆的方向。②各处作用力的大小相等。③轻杆不能伸长或压缩。④轻杆受到的弹力方式有:拉力、压力。⑤弹力变化所需时间极短,可忽略不计。
(3)轻弹簧:①各处的弹力大小相等,方向与弹簧形变的方向相反。②弹力的大小遵循F=kx的关系。③弹簧的弹力不能发生突变。
3.物理关于超重和失重的问题相关知识点:
(1)物体超重或失重是物体对支持面的压力或对悬挂物体的拉力大于或小于物体的实际重力。
(2)物体超重或失重与速度方向和大小无关。根据加速度的方向判断超重或失重:加速度方向向上,则超重;加速度方向向下,则失重。
(3)物体出于完全失重状态时,物体与重力有关的现象全部消失:①与重力有关的一些仪器如天平、台秤等不能使用。②竖直上抛的物体再也回不到地面。③杯口向下时,杯中的水也不流出。
高一物理必修一知识点梳理——公式大全
一、质点的运动(1)------直线运动
1)匀变速直线运动
1.平均速度V平=S/t (定义式) 2.有用推论Vt^2 –Vo^2=2as
3.中间时刻速度 Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo^2 +Vt^2)/2]1/2 6.位移S= V平t=Vot + at^2/2=Vt/2t
7.加速度a=(Vt-Vo)/t 以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0
8.实验用推论ΔS=aT^2 ΔS为相邻连续相等时间(T)内位移之差
9.主要物理量及单位:初速(Vo):m/s
加速度(a):m/s^2 末速度(Vt):m/s
时间(t):秒(s) 位移(S):米(m) 路程:米 速度单位换算:1m/s=3.6Km/h
注:(1)平均速度是矢量。(2)物体速度大,加速度不一定大。(3)a=(Vt-Vo)/t只是量度式,不是决定式。(4)其它相关内容:质点/位移和路程/s--t图/v--t图/速度与速率/
2) 自由落体
1.初速度Vo=0
2.末速度Vt=gt
3.下落高度h=gt^2/2(从Vo位置向下计算) 4.推论Vt^2=2gh
注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。
(2)a=g=9.8 m/s^2≈10m/s^2 重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。
3) 竖直上抛
1.位移S=Vot- gt^2/2 2.末速度Vt= Vo- gt (g=9.8≈10m/s2 )
3.有用推论Vt^2 –Vo^2=-2gS 4.上升高度Hm=Vo^2/2g (抛出点算起)
5.往返时间t=2Vo/g (从抛出落回原位置的时间)
注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。(3)上升与下落过程具有对称性,如在同点速度等值反向等。
二、质点的运动(2)----曲线运动 万有引力
1)平抛运动
1.水平方向速度Vx= Vo 2.竖直方向速度Vy=gt
3.水平方向位移Sx= Vot 4.竖直方向位移(Sy)=gt^2/2
5.运动时间t=(2Sy/g)1/2 (通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx^2+Vy^2)1/2=[Vo^2+(gt)^2]1/2
合速度方向与水平夹角β: tgβ=Vy/Vx=gt/Vo
7.合位移S=(Sx^2+ Sy^2)1/2 ,
位移方向与水平夹角α: tgα=Sy/Sx=gt/2Vo
注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。(2)运动时间由下落高度h(Sy)决定与水平抛出速度无关。(3)θ与β的关系为tgβ=2tgα 。(4)在平抛运动中时间t是解题关键。(5)曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时物体做曲线运动。
2)匀速圆周运动
1.线速度V=s/t=2πR/T 2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V^2/R=ω^2R=(2π/T)^2R 4.向心力F心=Mv^2/R=mω^2*R=m(2π/T)^2*R
5.周期与频率T=1/f 6.角速度与线速度的关系V=ωR
7.角速度与转速的关系ω=2πn (此处频率与转速意义相同)
8.主要物理量及单位: 弧长(S):米(m) 角度(Φ):弧度(rad) 频率(f):赫(Hz)
周期(T):秒(s) 转速(n):r/s 半径(R):米(m) 线速度(V):m/s
角速度(ω):rad/s 向心加速度:m/s2
注:(1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。(2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。
3)万有引力
1.开普勒第三定律T2/R3=K(=4π^2/GM) R:轨道半径 T :周期 K:常量(与行星质量无关)
2.万有引力定律F=Gm1m2/r^2 G=6.67×10^-11N?m^2/kg^2方向在它们的连线上
3.天体上的重力和重力加速度GMm/R^2=mg g=GM/R^2 R:天体半径(m)
4.卫星绕行速度、角速度、周期 V=(GM/R)1/2 ω=(GM/R^3)1/2 T=2π(R^3/GM)1/2
5.第一(二、三)宇宙速度V1=(g地r地)1/2=7.9Km/s V2=11.2Km/s V3=16.7Km/s
6.地球同步卫星GMm/(R+h)^2=m*4π^2(R+h)/T^2 h≈3.6 km h:距地球表面的高度
注:(1)天体运动所需的向心力由万有引力提供,F心=F万。(2)应用万有引力定律可估算天体的质量密度等。(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同。(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小。(5)地球卫星的环绕速度和最小发射速度均为7.9Km/S。
机械能
1.功
(1)做功的两个条件: 作用在物体上的力.
物体在里的方向上通过的距离.
(2)功的大小: W=Fscosa 功是标量 功的单位:焦耳(J)
1J=1N*m
当 0<= a <派/2 w>0 F做正功 F是动力
当 a=派/2 w=0 (cos派/2=0) F不作功
当 派/2<= a <派 W<0 F做负功 F是阻力
(3)总功的求法:
W总=W1+W2+W3……Wn
W总=F合Scosa
2.功率
(1) 定义:功跟完成这些功所用时间的比值.
P=W/t 功率是标量 功率单位:瓦特(w)
此公式求的是平均功率
1w=1J/s 1000w=1kw
(2) 功率的另一个表达式: P=Fvcosa
当F与v方向相同时, P=Fv. (此时cos0度=1)
此公式即可求平均功率,也可求瞬时功率
1)平均功率: 当v为平均速度时
2)瞬时功率: 当v为t时刻的瞬时速度
(3) 额定功率: 指机器正常工作时输出功率
实际功率: 指机器在实际工作中的输出功率
正常工作时: 实际功率≤额定功率
(4) 机车运动问题(前提:阻力f恒定)
P=Fv F=ma+f (由牛顿第二定律得)
汽车启动有两种模式
1) 汽车以恒定功率启动 (a在减小,一直到0)
P恒定 v在增加 F在减小 尤F=ma+f
当F减小=f时 v此时有值
2) 汽车以恒定加速度前进(a开始恒定,在逐渐减小到0)
a恒定 F不变(F=ma+f) V在增加 P实逐渐增加
此时的P为额定功率 即P一定
P恒定 v在增加 F在减小 尤F=ma+f
当F减小=f时 v此时有值
3.功和能
(1) 功和能的关系: 做功的过程就是能量转化的过程
功是能量转化的量度
(2) 功和能的区别: 能是物体运动状态决定的物理量,即过程量
功是物体状态变化过程有关的物理量,即状态量
这是功和能的根本区别.
4.动能.动能定理
(1) 动能定义:物体由于运动而具有的能量. 用Ek表示
表达式 Ek=1/2mv^2 能是标量 也是过程量
单位:焦耳(J) 1kg*m^2/s^2 = 1J
(2) 动能定理内容:合外力做的功等于物体动能的变化
表达式 W合=ΔEk=1/2mv^2-1/2mv0^2
适用范围:恒力做功,变力做功,分段做功,全程做功
5.重力势能
(1) 定义:物体由于被举高而具有的能量. 用Ep表示
表达式 Ep=mgh 是标量 单位:焦耳(J)
(2) 重力做功和重力势能的关系
W重=-ΔEp
重力势能的变化由重力做功来量度
(3) 重力做功的特点:只和初末位置有关,跟物体运动路径无关
重力势能是相对性的,和参考平面有关,一般以地面为参考平面
重力势能的变化是绝对的,和参考平面无关
(4) 弹性势能:物体由于形变而具有的能量
弹性势能存在于发生弹性形变的物体中,跟形变的大小有关
弹性势能的变化由弹力做功来量度
6.机械能守恒定律
(1) 机械能:动能,重力势能,弹性势能的总称
总机械能:E=Ek+Ep 是标量 也具有相对性
机械能的变化,等于非重力做功 (比如阻力做的功)
ΔE=W非重
机械能之间可以相互转化
(2) 机械能守恒定律: 只有重力做功的情况下,物体的动能和重力势能
发生相互转化,但机械能保持不变
表达式: Ek1+Ep1=Ek2+Ep2 成立条件:只有重力做功
高一物理必修一知识点测试题
一、选择题
1.下列哪组共点力作用于物体上,不能使物体保持平衡( )
A.2N,3N,5N
B.3N,4N,10N
C.10N,10N,10N
D.2N,3N,4N
2.将一个力F分解成两个分力,使其中一个分力的数值等于F,则( )
A.另一个分力一定为零
B.另一个分力的数值不可能等于F
C.另一个分力的数值可能大于F
D.另一个分力的数值一定小于F
3.如图所示,木块在推力F作用下向右做匀速直线运动,则下列说法中正确的有
A.物体一定受摩擦力
B.物体所受摩擦力与推力的合力一定为零
C.物体所受摩擦力与推力的合力的方向不一定竖直向下
D.物体所受摩擦力与推力的合力的方向一定水平向右
4.如图所示,物体静止在水平面上,今对物体施加一个与水平方向成?角的斜向上的拉力F,保持?角不变使F从零开始逐渐增大的过程中,物体始终未离开水平面.在此过程中物体受到的摩擦力将( )
A.逐渐增大
B.逐渐减小
C.先逐渐增大后逐渐减小
D.先逐渐减小后逐渐增大
5.某同学在做引体向上时处于如图所示的平衡状态,两只手臂夹角为60°,已知该同学体重为60kg.
(1)两只手臂的拉力分别是( )
A.300N B.400N
C.200N D.600N
(2)该同学的肽二头肌和肽三头肌所呈状态为( )
A.肱二头肌收缩,肱三头肌舒张
B.肱二头肌舒张,肱三头肌舒张
C.肱二头肌舒张,肱三头肌收缩
D.肱二头肌收缩,肱三头肌收缩
6.如图所示,重物的质量为m,轻细线AO和BO的A、B端是固定的,平衡时AO是水平的,BO与水平面的夹角为?,AO的拉力F1和BO的拉力F2的大小是( )
A.F1?mgcos?
B.F1?mgcot?
C.F2?mgsin?
D.F2?mg sin?
7.有一个直角支架AOB,AO水平放置,表面粗糙,OB竖直向下,表面光滑,AO上套有小环P,OB上套有小环Q,两环质量均为m,两环间由一根质量可忽略、不可伸展的细绳相连,并在某一位置平衡(如图).现将P环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO杆对P环的支持力N和细绳上的拉力T的变化情况是( )
A.N不变,T变大
B.N不变,T变小
C.N变大,T变大
D.N变大,T变小
如何学好高一物理?
了解高中物理的知识点物理知识包括运动学【匀变速直线,曲线运动】,相互作用力,牛顿运动定律,万有引力,机械能,电场,磁场,分子,动量守恒定律,近代物理学史。一定要掌握各个知识点概念可以自己根据书本或者教辅总结知识点,特别要搞懂它的性质【通过图像,事例,题目理解,而不能死记硬背】课上认真听讲,积极思维,做好适当的记录课上认真听讲,要做到明白教师讲课的重点,听课也要有节奏,要做到这一点就要积极思维。做好适当的记录是指记下关键的地方、自己有疑问的地方、典型的例子及解答的关键。一般内容用本子记录,对一些概念的补充说明可以直接记在书本上。必须全面记录好笔记笔记上要把所有知识全面记录下来,课堂上记录重点,课下加以补充。
由于高中物理需要补充的知识太多,把笔记记录在课本上的做法非常不可取,一个原因是需要记录知识太多而课本空白区域面积太小,再一个原因是如果记录在课本上会导致课本乱七八糟,既影响记忆效果,又影响心情。一定要学会分析总结错误并把自己所犯错误放大平时对每一次的练习、考试中的任何错误都不能轻易放过。平时千万不要积累错误,高中物理知识太多,每天学习任务繁重,今天积累几个明天积累几个,到最后就会积重难返!另外一定要学会分析错误原因、学会归纳、归类、举一反三、一题多解、多题归一!做好及时的复习上完课的当天,必须做好当天的复习。复习的有效方法不只是一遍遍地看书和笔记,而最好是采取回忆式的复习:先把书、笔记合起来回忆上课时老师讲的内容,例如:分析问题的思路、方法等(也可边想边在草稿本上写一写)尽量想得完整些。然后打开书和笔记本,对照一下还有哪些没记清的,把它补起来,就使得当天上课内容巩固下来了,同时也就检查了当天课堂听课的效果如何,也为改进听课方法及提高听课效果提出必要的改进措施。
高中物理学习方法及做题技巧
做物理题目时,大家的感受一般是简单题目会做,一旦出题人设陷阱,很多考生都会纷纷往里面跳。原因很简单,就是物理学的不透彻,不知道知识点的真正内涵及要注意的细节,只是学会了大概的解题步骤,所以一绕弯子就会难倒大家。
物理解题要回归教材,把例题看透了,学会举一反三,懂得万变不离其宗的道理。做物理题目每做一道综合题目都要完完全全做会,每一个步骤都要分析的很透彻,不要看懂答案就以外自己会了,要能够给别人讲出来才是真的懂了,别人提问难不住你了才是真的会了
学物理不要贪多,刷题是没有用的,只有理解了做题思路,能独立分析会每一道题目时,才能学好物理。物理会做的题目不必反复去做,而应以自己不会做的题目为主,突破重点和难点。
Copyright 2015-2022 魔方网版权所有 备案号:京ICP备2022018928号-48 联系邮箱:315 54 11 85 @ qq.com