因式分解常用公式:平方差公式:a2-b2=(a+b)(a-b)。完全平方公式:a2+2ab+b2=(a+b)2。立方和公式:a3+b3=(a+b)(a2-ab+b2)。立方和公式:a3+b3=(a+b)(a2-ab+b2)。立方差公式:a3-b3=(a-b)(a2+ab+b2)。
因式分解常用公式:
1、平方差公式:a2-b2=(a+b)(a-b)。
(资料图)
2、完全平方公式:a2+2ab+b2=(a+b)2。
3、立方和公式:a3+b3=(a+b)(a2-ab+b2)。
4、立方差公式:a3-b3=(a-b)(a2+ab+b2)。
5、完全立方和公式:a3+3a2b+3ab2+b3=(a+b)3。
6、完全立方差公式:a3-3a2b+3ab2-b3=(a-b)3。
7、三项完全平方公式:a2+b2+c2+2ab+2bc+2ac=(a+b+c)2。
8、三项立方和公式:a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ac)。
平方根计算公式:
根号内的数可以化成相同或相同则可以相加减,不同不能相加减。
如果根号里面的数相同就可以相加减,如果根号里面的数不相同就不可以相加减,能够化简到根号里面的数相同就可以相加减了。
举例如下:
(1)2√2+3√2=5√2(根号里面的数都是2,可以相加)
(2)2√3+3√2(根号里面的数一个是3,一个是2,不同不能相加)
(3)√5+√20=√5+2√5=3√5(根号内的数虽然不同,但是可以化成相同,可以相加)
(4)3√2-2√2=√2
(5)√20-√5=2√5-√5=√5
根号的乘除法:
√ab=√a·√b﹙a≥0b≥0﹚,如:√8=√4·√2=2√2
√a/b=√a÷√b
三角不等式
|a+b|≤|a|+|b|
|a-b|≤|a|+|b|
|a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b|
-|a|≤a≤|a|
常见图形的面积公式:
长方形的面积 = 长×宽 S = ab
正方形的面积 = 边长×边长 S = a2
三角形的面积=底×高÷2 S=ah÷2
平行四边形的面积=底×高 S=ah
梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
圆的面积=圆周率×半径×半径
解方程必背公式:
乘法与因式分解
a2-b2=(a+b)(a-b)
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b)(a2+ab+b2)
一元二次方程的解:
-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a
初中数学的记录方法比较简单,因为公式并不是很复杂,如果能推理的话,尽量还是选择将公式推理出来,这样的话,在考试或者是用的时候哪怕自己没有记住,也是可以将全部的内容展现出来的。这一点还是十分关键的一个内容的。
①正确书写公式,记住公式中字母间的关系;
②懂得公式的来龙去脉,掌握推导过程;
③用数字验算公式,在公式具体化过程中体会公式中反映的规律;
④将公式进行各种变换,了解其不同的变化形式;
⑤变化公式中的字母所蕴含的内容,达到自如地应用公式。
Copyright 2015-2022 魔方网版权所有 备案号:京ICP备2022018928号-48 联系邮箱:315 54 11 85 @ qq.com